Abstract

We report on the characterization of narrow-bandgap ( Eg ≍ 0.4 eV, at 300 K) interband cascade thermophotovoltaic (TPV) devices with InAs/GaSb/AlSb type-II superlattice absorbers. Two device structures with different numbers of stages (two and three) were designed and grown to study the influence of the number of stages and absorber thicknesses on the device performance at high temperatures (300–340 K). Maximum power efficiencies of 9.6% and 6.5% with open-circuit voltages of 800 and 530 mV were achieved in the three- and two-stage devices at 300 K, respectively. These results validate the benefits of a multiple-stage architecture with thin individual absorbers for efficient conversion of infrared radiation into electricity from low-temperature heat sources. Additionally, we developed an effective characterization method, based on an adapted version of Suns - V oc technique, to extract the device series and shunt resistance in these TPV cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call