Abstract

The newly developed method of time-of-flight (ToF) momentum microscopy was used to analyse the cold electron emission from a Cs 3D magneto-optical trap (MOT). Three-step resonant photoionization was implemented via two intermediate states (6P3/2 pumped with 852 nm laser and 7S1/2 with 1470 nm) and a tuneable femtosecond Ti:sapphire laser for the final ionization step. The magnetic field of the MOT is switched off during the photoionization step. The natural bandwidth of the fs-laser is reduced to 4 meV using optical spectral filters. Precise tuning of the photon energy makes it possible to observe the transition regime between direct photoemission into the open continuum and field induced ionization of highly-excited Rydberg states. The paths can be identified by their characteristic dependency on the extraction field and on the Ti:sapphire polarization. ToF analysis allowed us to disentangle the ionization paths and the dependence of the spatio-temporal distribution of the cold electrons on the polarization of the ionizing laser.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.