Abstract

In this paper, cascaded chirped fiber Bragg grating or CFBG based narrow-band bandpass filter capable of operating in C-band is proposed and analyzed. Cascading one linearly increasing chirp (LIC) FBG with another linearly decreasing chirp (LDC) FBG reduces the FWHM almost by five folds with a change in the normalized reflectivity. Analytical formulation based on a piecewise uniform approach (PUA) for the proposed structure(s) is also discussed. Extension of PUA approach for tilted FBGs is also presented in the paper. For the proposed structures, we have considered each CFBGs may have equal or different chirp rates keeping all other design parameters same. As per the simulation results, the narrowest and widest FWHM achieved by the proposed structures are 1.56 nm and 1.77 nm, respectively. In such designs, the highest and lowest normalized reflectivity offered by the cascaded CFBG structures is approximately 0.81 and 0.39, respectively. The effect of temperature on the spectral characteristics for all the proposed structures is also studied. Simulation results reveal that the Bragg wavelength of the proposed cascaded structures will shift +1.701 nm for 100°C increment in operating temperature in the absence of strain. The thermal sensitivity of all the proposed structures is estimated to be 17.01 pm/∘C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.