Abstract
The nonlinear autoregressive moving average with exogenous inputs (NARMAX) model provides a powerful representation for time series analysis, modeling and prediction due to its capability of accommodating the dynamic, complex and nonlinear nature of real-world time series prediction problems. This paper focuses on the modeling and prediction of NARMAX-model-based time series using the fuzzy neural network (FNN) methodology. Both feedforward and recurrent FNNs approaches are proposed. Furthermore, an efficient algorithm for model structure determination and parameter identification with the aim of producing improved predictive performance for NARMAX time-series models is developed. Experiments and comparative studies demonstrate that the proposed FNN approaches can effectively learn complex temporal sequences in an adaptive way and they outperform some well-known existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.