Abstract

Background: Excessive fructose consumption causes hepatic lipid accumulation via increased triglyceride (TG) synthesis, leading to the development and progression of non-alcoholic fatty liver disease (NALFD). Naringin, a flavanone glycoside found in citrus fruit, has antioxidant and hypolipidemic properties. Therefore, the aim of this study was to investigate the effect of naringin on fructose-induced NAFLD in rats and the possible underlying mechanism. Methods: Male Sprague Dawley rats were given 10% (w/v) fructose in drinking water for 12weeks. Naringin (100mg/kg/day) was administered orally to rats for the last 4weeks of fructose overload. After 12weeks of treatment, the hepatic lipid content was determined. In addition, the expression of proteins involved in de novo lipogenesis (DNL) and TG synthesis as well as antioxidant and inflammatory mediators in the liver were examined by western blot analysis. Results: Treatment of fructose-fed rats with naringin significantly decreased the hepatic TG and cholesterol content as well as serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities. Naringin treatment also decreased the hepatic expression of carbohydrate response element binding protein (ChREBP), sterol regulatory element-binding protein-1c (SREBP-1c) and nuclear SREBP-1c (nSREBP-1c) as well as enzymes involved in DNL (acetyl CoA carboxylase [ACC] and fatty acid synthase [FAS]) and an enzyme involved in TG synthesis (glycerol-3-phosphate acyltransferase 1 [GPAT-1] and diacylglycerol acyltransferase2 [DGAT2]) in fructose-fed rats. In addition, naringin induced a significant decrease in the hepatic expression of nuclear factor kappa B (NF-κB) and tumor necrosis factor α (TNF-α). Furthermore, naringin administration restored the expression of the antioxidant mediators nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) in the liver of fructose-fed rats. Conclusion: These results demonstrate that oral administration of naringin protects against fructose-induced hepatic steatosis by decreasing DNL and TG synthesis. In addition, naringin could prevent NAFLD progression via targeting the Nrf2/HO-1 and the NF-κB/TNF-α pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call