Abstract
Non-alcoholic steatohepatitis (NASH) is a severe inflammatory phase of the non-alcoholic fatty liver disease (NAFLD) spectrum and can progress to advanced stages of NAFLD if left untreated. This study uses multi-omics data to elucidate the underlying mechanism of naringenin's reported benefit in alleviating (NASH). Male mice were fed a NASH-inducing (methionine-choline-deficient) MCD diet with or without naringenin supplementation for 6 weeks. Naringenin prevented NASH-induced histopathological liver damage and reversed the abnormal levels of hepatic triglyceride (TG)/total cholesterol (TC), serum TG/TC, serum alanine aminotransferase/aspartate transaminase, and hepatic malondialdehyde and glutathione. Importantly, naringenin intervention significantly modulated the relative abundance of gut microbiota and the host metabolomic profile. We detected more than 700 metabolites in the serum and found that the gut genus levels of Anaeroplasma and the [Eubacterium] nodatum group were closely associated with xanthine, 2-picoline, and securinine, respectively. Tuzzerella alterations showed the highest number of associations with host endogenous metabolites such as FAHFA (8:0/10:0), FFA (20:2), carnitine C8:1, tridecanedioic acid, securinine, acetylvaline, DL-O-tyrosine, and Phe-Asn. This study indicates that the interplay between host serum metabolites and gut microbiota may contribute to the therapeutic effect of naringenin against NASH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.