Abstract

Naringenin has shown paradoxical results to modulate the function of multidrug resistance-associated proteins (MRPs). The aim of this study is to interpret whether naringenin can reverse intrinsic and/or acquired resistance of cancer cells to chemotherapeutic agents. The effects of naringenin on the uptake, retention and cytotoxicity of doxorubicin were investigated in A549, MCF-7, HepG2 and MCF-7/DOX cells. Cellular efflux pathways modulated by naringenin were assessed with their specific substrates and inhibitors. The improved antitumor activity of doxorubicin in combination with naringenin was also investigated in vivo. The IC(50) values of doxorubicin in combination with naringenin in A549 and MCF-7 cells were approximately 2-fold lower than that of doxorubicin alone. The increased sensitivity to doxorubicin by naringenin in HepG2 and MCF-7/DOX cells was not observed. Naringenin increased the cellular doxorubicin accumulation through inhibiting doxorubicin efflux in the cells expressing MRPs but not P-gp. In contrast to doxorubicin alone, doxorubicin in combination with naringenin enhanced antitumor activity in vivo with low systemic toxicity. Naringenin enhances antitumor effect of doxorubicin by selective modulating drug efflux pathways. Naringenin will be a useful adjunct to improve the effectiveness of chemotherapeutic agents in treatment of human cancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call