Abstract
Doxorubicin (DOX) is a well-known cytotoxic agent used extensively as a chemotherapeutic drug to eradicate a wide variety of human cancers. Reactive oxygen species (ROS)-mediated oxidative stress during DOX treatment can induce cardiac, renal, and hepatic toxicities, which can constrain its use as a potential cytotoxic agent. The present work investigates the antioxidant potential of naringenin (NAR) against DOXinduced toxicities of a Dalton's lymphoma ascites (DLA) tumor-bearing mouse model. Mice were randomized into four groups: a negative control, positive control, DOX (2.5 mg/kg) treated, and DOX (2.5 mg/kg) + NAR (50 mg/kg/d) treated. DOX administration significantly altered the levels of functional markers in blood and antioxidant enzymes in kidney, heart, lung, liver, spleen, and tumor tissues. These changes in antioxidant enzymes and successive lipid peroxidation were prevented by NAR supplementation, resulting in decreases in the risk of toxicity due to DOX therapy. Histopathology results and electron paramagnetic resonance imaging (EPRI) of the tumor microenvironment confirmed this evidence. Using EPRI, pharmacokinetics of the nitroxide, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3-CP) was monitored intratumorally before and after chemotherapy. EPRI of the DOX + NAR-treated mouse model showed reduced tumor size with significant modification of the hypoxic condition inside the tumor microenvironment. Consequently, these findings suggest that NAR treatment significantly reduces DOX-induced toxicity and the hypoxic condition in a DLA tumor-bearing mouse model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.