Abstract

Many weevils are known as notorious devastating agricultural pests and generally associated with symbiotic bacteria. Here, we investigated the following pest and non-pest weevils collected in Japan for their bacterial associates: the banana stem weevil Odoiporus longicollis (Olivier); the Asiatic palm weevil Rhabdoscelus lineaticollis (Heller); the red palm weevil Rhynchophorus ferrugineus (Olivier); the Japanese giant weevil Sipalinus gigas (Fabricius); the olive weevil Pimelocerusperforatus (Roelofs); the black hard weevil Pachyrhynchus infernalis Fairmaire; and the Yonaguni hard weevil Metapocyrtus yonagunianus Chujo. Bacterial 16S rRNA gene was amplified by a polymerase chain reaction (PCR) from all the weevils, and genotyping and sequencing of the PCR products revealed that Nardonella, an ancient weevil-associated endosymbiont lineage, is the dominant bacterial associate for them. Molecular phylogenetic analyses based on bacterial 16S rRNA and groEL gene sequences showed that the weevil endosymbionts are placed within the Nardonella clade in the γ-Proteobacteria. The phylogenetic relationship of the Nardonella endosymbionts was concordant with the systematics of the weevil hosts, favoring the hypothesis of weevil-Nardonella co-speciation over evolutionary time. In situ hybridization visualized localization of the Nardonella endosymbionts in the larval bacteriome at the foregut-midgut junction in R. ferrugineus and S. gigas, and in the ovarial tips of adult females in O. longicollis. Our results highlight the general relevance of the Nardonella endosymbionts to the biology, control and management of these and other pest weevils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call