Abstract

Study ObjectiveTo investigate pain sensitivity after sleep restriction and the restorative effect of napping.DesignA strictly controlled randomized crossover study with continuous polysomnography monitoring was performed.SettingLaboratory-based study.Participants11 healthy male volunteers.InterventionsVolunteers attended two three-day sessions: “sleep restriction” alone and “sleep restriction and nap”. Each session involved a baseline night of normal sleep, a night of sleep deprivation and a night of free recovery sleep. Participants were allowed to sleep only from 02:00 to 04:00 during the sleep deprivation night. During the “sleep restriction and nap” session, volunteers took two 30-minute naps, one in the morning and one in the afternoon.Measurements and ResultsQuantitative sensory testing was performed with heat, cold and pressure, at 10:00 and 16:00, on three areas: the supraspinatus, lower back and thigh. After sleep restriction, quantitative sensory testing revealed differential changes in pain stimuli thresholds, but not in thermal threshold detection: lower back heat pain threshold decreased, pressure pain threshold increased in the supraspinatus area and no change was observed for the thigh. Napping restored responses to heat pain stimuli in the lower back and to pressure stimuli in the supraspinatus area.ConclusionsSleep restriction induces different types of hypersensitivity to pain stimuli in different body areas, consistent with multilevel mechanisms, these changes being reversed by napping. The napping restorative effect on pain thresholds result principally from effects on pain mechanisms, since it was independent of vigilance status.

Highlights

  • Reciprocal interactions between sleep disturbances and pain have been reported

  • Quantitative sensory testing revealed differential changes in pain stimuli thresholds, but not in thermal threshold detection: lower back heat pain threshold decreased, pressure pain threshold increased in the supraspinatus area and no change was observed for the thigh

  • When volunteers were allowed a nap before heat pain testing, no significant differences in heat pain threshold with respect to baseline values were observed on the day after sleep restriction, in either the morning or the afternoon (F (2, 68) = 1.75, p = 0.21; “sleep restriction + nap” session, Table 1)

Read more

Summary

Introduction

Reciprocal interactions between sleep disturbances (fragmentation and restriction) and pain have been reported. A population-based study showed that sleep duration influenced pain perception with less than six hours sleep per night associated with greater pain the following day [1]. A questionnaire-based study of 882 patients with chronic low back pain found that a large proportion of these patients (42%) slept for less than six hours per night [2]. A prospective study of younger subjects found that insufficient sleep (quantity or quality) at the age of 15 to 16 years was predictive of low back pain in 18- to 19-year-old girls, even after multiple adjustments [3]. Actigraphy recordings showed sleep to be less effective in 15 patients with chronic low back pain than in matched healthy subjects and sleep quality to be poor in a group of 80 patients with low back pain [5, 6]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call