Abstract
A reliable and sensitive detection of biogenic amines (BAs) is essential to ensure food safety and maintain public health. In this study, two naphthyl end-capped terthiophene derivatives, namely, 5-(naphthalen-1-yl)-2,2':5',2''-terthiophene (NA-3T) and 5,5''-di(naphthalen-1-yl)-2,2':5',2''-terthiophene (NA-3T-NA), were employed to develop chemiresistive sensors for detecting gaseous BAs. In contrast to NA-3T, the NA-3T-NA-based sensor showed a higher sensitivity for trimethylamine (TMA) with an experimental detection limit lower than 22 ppm, and for aromatic BAs, including dopamine, histamine, tryptamine, and tyramine. Additionally, the recovery time for TMA was found to be shorter than 23 s. In addition, both sensors were successfully used for an in situ evaluation of meat freshness by monitoring the concentration of relevant volatile BAs. The difference in the sensing performances of the two chemiresistive sensors was tentatively ascribed to different packing structures of the derivatives and the adlayer structures of the films developed with the compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.