Abstract

A naphthalimide-based low-molecular-mass fluorophore (NA) was designed and synthesized by introducing an azetidine unit onto the aromatic ring of the compound as an electron-donating structure, and a hydrophilic (2-(2-aminoethyl-amino)ethanol) moiety into the "N-imide site" of the core structure. UV-vis absorption and fluorescence measurements revealed that the fluorophore is soluble in water and shows a fluorescent quantum yield of ∼20% and lifetime of ∼3.7 ns in the solvent within a wide pH range. Moreover, the fluorescence emission and anisotropy of the fluorophore as produced are both dependent upon the viscosity and polarity of the medium. Further studies demonstrated that NA can be used as a selective probe to monitor the aggregation of anionic surfactants owing to its accumulation onto the anionic surfaces of the aggregates as formed. Inspired by the discovery, NA was successfully applied for detection of cell membranes and E. coli via monitoring of their negatively charged surfaces, which is important for fast checking of biological contamination of water. Importantly, all the tests could be performed in a visualized manner. We believe that the new, low-molecular-mass fluorophore as created may find applications in chemical and biochemical sensing and imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.