Abstract

Self-doping ionene polymers were efficiently synthesized by reacting functional naphthalene diimide (NDI) with 1,3-dibromopropane (NDI-NI) or trans-1,4-dibromo-2-butene (NDI-CI) via quaternization polymerization. These NDI-based ionene polymers are universal interlayers with random molecular orientation, boosting the efficiencies of fullerene-based, non-fullerene-based, and ternary organic solar cells (OSCs) over a wide range of interlayer thicknesses, with a maximum efficiency of 16.9 %. NDI-NI showed a higher interfacial dipole (Δ), conductivity, and electron mobility than NDI-CI, affording solar cells with higher efficiencies. These polymers proved to efficiently lower the work function (WF) of air-stable metals and optimize the contact between metal electrode and organic semiconductor, highlighting their power to overcome energy barriers of electron injection and extraction processes for efficient organic electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call