Abstract

In this study, a nano second pulsed dielectric barrier discharge plasma reactor has been investigated for conversion of heavy naphtha. Continuous liquid hydrocarbons cracking and instant production of hydrogen and light gaseous hydrocarbons in the range of C1–C3 have been studied at room temperature and atmospheric pressure by using argon as a carrier gas. The effect of applied voltage, pulse frequency and inner electrode material has been examined on the quantity and quality of products. Aluminum, copper, stainless steel, iron and brass have been selected to investigate the effect of electrode material. Results show that applied voltage, pulse repetition frequency and inner electrode material, affect the energy efficiency of the plasma cracking process. Stainless steel has been selected due to its high performance among all tested materials. The highest process efficiency has been obtained at 7kV and 18kHz which was 79.38lkWh−1 for 1mlmin−1 of feed injection and 24.70W input power. In this condition, the generation rate of hydrocarbon is 22.50mlmin−1. Results indicate that the hydrocarbon product distribution during the process is ethylene≫C2>C1≫C3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.