Abstract

Developmental and epileptic encephalopathies (DEE) are a group of neurodevelopmental disorders characterized by epileptic seizures associated with developmental delay or regression. DEE are genetically heterogeneous, and the proteins involved play roles in multiple pathways such as synaptic transmission, metabolism, neuronal development or maturation, transcriptional regulation, and intracellular trafficking. We performed whole exome sequencing on a consanguineous family with three children presenting an early onset (<6 months) with clusters of seizures characterized by oculomotor and vegetative manifestations, with an occipital origin. Before 1 year of age, interictal electroencephalographic recordings were well organized and neurodevelopment was unremarkable. Then, a severe regression occurred. We identified a novel homozygous protein-truncating variant in the NAPB (N-ethylmaleimide-sensitive fusion [NSF] attachment protein beta) gene that encodes the βSNAP protein, a key regulator of NSF-adenosine triphosphatase. This enzyme is essential for synaptic transmission by disassembling and recycling proteins of the SNARE complex. Here, we describe the electroclinical profile of each patient during the disease course. Our findings strengthen the association between biallelic variants in NAPB and DEE and refine the associated phenotype. We suggest including this gene in the targeted epilepsy gene panels used for routine diagnosis of unexplained epilepsy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.