Abstract

Myoblast fusion is crucial for the formation, growth, maintenance and regeneration of healthy skeletal muscle. Unfortunately, the molecular machinery, cell behaviors, and membrane and cytoskeletal remodeling events that govern fusion and myofiber formation remain poorly understood. Using time-lapse imaging approaches on mouse C2C12 myoblasts, we identify discrete and specific molecular events at myoblast membranes during fusion and myotube formation. These events include rearrangement of cell shape from fibroblast to spindle-like morphologies, changes in lamellipodial and filopodial extensions during different periods of differentiation, and changes in membrane alignment and organization during fusion. We find that actin-cytoskeleton remodeling is crucial for these events: pharmacological inhibition of F-actin polymerization leads to decreased lamellipodial and filopodial extensions and to reduced myoblast fusion. Additionally, shRNA-mediated inhibition of Nap1, a member of the WAVE actin-remodeling complex, results in accumulations of F-actin structures at the plasma membrane that are concomitant with a decrease in myoblast fusion. Our data highlight distinct and essential roles for actin cytoskeleton remodeling during mammalian myoblast fusion, provide a platform for cellular and molecular dissection of the fusion process, and suggest a functional conservation of Nap1-regulated actin-cytoskeleton remodeling during myoblast fusion between mammals and Drosophila.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.