Abstract

The retinal microvascular damage is a complication of diabetic retinopathy (DR). Hyperglycemia and hypoxia are responsible of aberrant vessel's proliferation. The cellular response to hypoxia is mediated through activation of hypoxia-inducible factors (HIFs). Among these, HIF-1α modulates expression of its target gene, VEGF, whose upregulation controls the angiogenic event during DR development. In a previous study, we have demonstrated that a small peptide, NAP, is able to protect retina from hyperglycemic insult. Here, we have demonstrated that its intraocular administration in a rat model of diabetic retinopathy has reduced expression of HIF-1α, HIF-2α, and VEGF by increasing HIF-3α levels. These data have been also confirmed by immunolocalization study by confocal microscopy. Although these evidences need to be further deepened to understand the molecular mechanism involved in the protective NAP action, the present data suggest that this small peptide may be effective to prevent the development of this ocular pathology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call