Abstract

In this study, NaOH-assisted H2O2 post-modification was proposed as a novel strategy to enhance the adsorption of radioactive strontium (Sr) onto residual coffee waste biochars (RCWBs). To validate its viability, the adsorption capacities and mechanisms of Sr(II) using pristine (RCWBP), H2O2 post-modified (RCWBHP), and NaOH-assisted H2O2 post-modified residual coffee waste biochars (RCWBNHP) were experimentally and theoretically investigated. The highest adsorption capacity of Sr(II) for RCWBNHP (10.91 mg/g) compared to RCWBHP (5.57 mg/g) and RCWBP (5.07 mg/g) was primarily attributed to higher negative surface zeta potential (RCWBNHP = –5.66 → −30.97 mV; RCWBHP = –0.31 → −11.29 mV; RCWBP = 1.90 → −10.40 mV) and decoration of Na on the surfaces of RCWBP via NaOH-assisted H2O2 post-modification. These findings agree entirely with the theoretical observations that the adsorption of Sr(II) onto RCWBP and RCWBHP was controlled by electrostatic interactions involving carbonyls whereas enriched carboxylic acids and decorated Na on the surfaces of RCWBNHP through the replacement of Mg and K by NaOH-assisted H2O2 modification stimulated electrostatic interactions and cation exchanges governing the adsorption of Sr(II). Hence, NaOH-assisted H2O2 post-modification seemed to be practically applicable for improving the adsorption capacity of Sr(II) using RCWB-based carbonaceous adsorbents in real water matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.