Abstract

"Nanozyme" is used to describe various catalysts from immobilized inorganic metal complexes, immobilized enzymes to inorganic nanoparticles. Here, the history of nanozymes is dvescribed in detail, and they can be largely separated into two types. Type 1 nanozymes refer to immobilized catalysts or enzymes on nanomaterials, whichweredominant in the first decade since 2004. Type 2 nanozymes, which rely on the surface catalytic properties of inorganic nanomaterials, are the dominating type in the past decade. The definition of nanozymes is evolving, and a definition based on the same substrates and products as enzymes are able to cover most currently claimed nanozymes, although they may have different mechanisms compared to their enzyme counterparts. A broader definition can inspire application-based research to replace enzymes with nanomaterials for analytical, environmental, and biomedical applications. Comparison with enzymes also requires a clear definition of a nanozyme unit. Four ways of defining a nanozyme unit are described, with iron oxide and horseradish peroxidase activity comparison as examples in each definition. Growing work is devoted to understanding thecatalytic mechanism of nanozymes, which provides a basis for further rational engineering of active sites. Finally, future perspective of the nanozyme field is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.