Abstract
BackgroundFood safety as a critical topic of international concern has obtained increasing attention worldwide. Thus, it is of great significance to develop sensitive, accurate, and rapid detection methods for food safety analysis. In recent years, emerging nanozymes have become a promising alternative to natural enzymes for the development of biosensors to achieve food safety analysis due to their simpler preparation processes, more robust activity, higher stability, higher recycling efficiency, and lower cost compared with that of natural enzymes. To achieve portable and on-site detection, nanozyme-based biosensors have been successfully integrated with advanced microfluidic devices (e.g., microfluidic chips) for the construction of nanozyme-enabled microfluidic biosensors to realize the rapid detection of food contaminants. Scope and approachIn this review, we summarized the latest advances on nanozyme-enabled microfluidic biosensors and their applications in the field of food safety analysis. Firstly, a comprehensive summary and discussion on the catalytic mechanisms and roles of nanozymes for the construction of biosensors were conducted. Then, attention was focused on the nanozyme-enabled microfluidic biosensors and their applications in the field of food safety analysis, including the detection of foodborne pathogens, mycotoxins, heavy metal ions, and pesticide residues. Impressively, the remaining challenges and chances in this significant and promising field were proposed. Key findings and conclusionsEmerging nanozymes have been successfully combined with microfluidic technology, opening a new avenue for rapid, sensitive, and on-site food safety analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.