Abstract

The accurate and timely detection of bacteria is critically important for human health as it helps to determine the original source of bacterial infections and prevent disease spread. Herein, gold nanoparticles (AuNPs) were synthesized using polyoxometalates (POMs) as the stabilizing agent. Since AuNPs have glucose oxidase (GOx)-like activity and POMs possess peroxidase (HRP)-like activity, the as-prepared Au@POM nanoparticles have double enzyme-like activities and facilitate cascade reaction. As known, glucose is required as an energy resource during bacterial metabolism, the concentration of glucose decreases with the increase of bacteria content in a system with bacteria and glucose. Therefore, when we use Au@POM nanozymes to trigger the cascade catalysis of glucose and 3,3',5,5'-tetramethylbenzidine (TMB), the concentration of glucose and bacteria can be sensitively detected using the absorbance intensity at 652 nm in the visible spectrum. As demonstration, S. aureus and E. coli were used as model bacteria. The experimental results show that the present method has a good linear relationship in the bacterial concentration range of 1 to 7.5 × 107 colony-forming units (CFU) mL-1 with a detection limit of 5 CFU mL-1. This study shows a great promise of nanozyme cascade reactions in the construction of biosensors and clinical detections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.