Abstract

Utilizing catalase-mimicking nanozymes to produce O2 is an effective method to overcome tumor hypoxia. However, it is challenging to fabricate nanozymes with ultrahigh catalytic activity. Palladium nanosheet (Pd NS), a photothermal agent for photothermal therapy (PTT), has superior catalase-mimicking activity. Here, titanium dioxide (TiO2 ) is used to modify Pd NS (denoted Pd@TiO2 ) by a simple one-step method to improve its catalytic activity about 8 times. The enhancement mechanism's fundamental insights are discussed through experiments and density functional theory calculations. Next, zinc phthalocyanine is loaded on Pd@TiO2 to form a nanomotor (denoted PTZCs) with the synergistic activities of photodynamic therapy and PTT. PTZCs inherit the catalase activity of Pd@TiO2 to facilitate the decomposition of endogenous H2 O2 to O2 , which can relieve tumor hypoxia and propel PTZC migration to expand the reach of PTZCs, further enhancing its synergistic treatment outcome both in vitro and in vivo. It is proposed that this work can provide a simple and effective strategy for catalytic activity enhancement and bring a critical new perspective to studying and guiding the nanozyme design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.