Abstract
Efficiently balancing excess reactive oxygen species (ROS) caused by various factors on the ocular surface is a promising strategy for preventing the development of ocular surface diseases (OSDs). Nevertheless, the conventional topical administration of antioxidants is limited in efficacy due to poor absorption, rapid metabolism, and irreversible depletion, which impede their performance. To address this issue, contact lenses embedded with antioxidant nanozymes that can continuously scavenge ROS, thereby providing an excellent preventive effect against OSDs are developed. Specifically, Prussian blue family nanozymes are chosen based on their multiple antioxidant enzyme-like activities and excellent biocompatibility. The diverse range of colors made them promising candidates for the development of cosmetic contact lenses (CCLs) as a substitute for conventional pigments. The efficacy of nanozyme-CCLs is demonstrated in rabbits and rats exposed to a high risk of developing OSDs. These OSDs' prevention nanozyme-CCLs can pave the way for CCLs toward powerful wearable biomedical devices and provide novel strategies for the rational utilization of nanomaterials in clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.