Abstract

In this work, PtCo bimetallic nanoparticles supported on multi-walled carbon nanotubes (PtCo@MWCNTs) nanohybrid was prepared simply and used for the first time as a novel nanozyme in the colorimetric sensing of L-cysteine (L-Cys) and Cu2+. Due to its strong enzyme-like catalytic activity, the prepared PtCo@MWCNTs nanohybrid can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to form ox-TMB without H2O2. Interestingly, the oxidase-like active of PtCo@MWCNTs was effectively suppressed by L-Cys, which could reduce ox-TMB to colorless TMB and lead to a pronounced blue fading, and the absorbance at 652nm gradually decreased with increasing L-Cys concentration. On the other hand, the nanozyme activity of PtCo@MWCNTs can be recovered due to the complexation between L-Cys and Cu2+. Therefore, a colorimetric method based on PtCo@MWCNTs nanozyme was established to detect L-Cys and Cu2+. The results show that the assay platform has simple, rapid, sensitive performance and good selectivity. The detection limits for L-Cys and Cu2+ are 0.041μM and 0.056μM, respectively, coupled with the linearities of 0.01 ~ 60.0μM and 0.05 ~ 80.0μM. The successful first application of PtCo bimetal-based nanozyme in colorimetric sensing herein opens a new direction for nanozyme and colorimetric analysis, showing great potential applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call