Abstract

Zirconium carbide (ZrC) has extended application in many ceramic and metal matrix composites especially used for ultra high temperature conditions. The synthesis of zirconium carbide powder is costly and difficult because of its high refractoriness and chemically inert properties. In this research, the synthesis of zirconium carbide nanopowder at low temperature via carbothermal reduction route was investigated according to thermodynamic data. The starting materials were zirconium acetate and sucrose as zirconium and carbon sources, respectively. After preparation of different carbon/zirconium ratio containing precursors, the dried precursors were heat treated at 1400°C and vacuum atmosphere. Also the ZrC formation was followed by thermal analysis of the produced precursors. The phase evolutions and microstructural studies were carried out using X-ray diffraction and scanning electron microscopy. The results showed that it is possible to synthesis zirconium carbide nanopowder with round shape and crystallite sizes smaller than 20 nm at low temperatures. Also according to thermodynamic calculations, it was concluded that by applying vacuum condition, the zirconium carbide formation can occur at less than 1000°C which is very effective on the size reducing of produced ZrC nanopowders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.