Abstract
We observed that nanowires of Fe grown in the lumens of multi-walled carbon nanotubes required four times higher magnetic field strength to reach saturation compared to planar nanometric thin films of Fe on MgO(100). Nanowires of Fe and nanometric thin films of Fe both exhibited two fold magnetic symmetries. Structural and magnetic properties of 1-dimensional nanowires and 2-dimensional nanometric films were studied by several magnetometery techniques. The θ-2θ x-ray diffraction measurements showed that a (200) peak of Fe appeared on thin film samples deposited at higher substrate temperatures. In these samples prepared at higher temperatures, lower coercive field and highly pronounced two-fold magnetic symmetry were observed. Our results show that maximum magnetocrystalline anisotropy occurred for sample deposited at 100 °C and it decreased at higher deposition temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.