Abstract

Nanowires are structures with features on the nanoscale, and it is therefore essential to study their properties on that scale. We present optical data from a variety of nanowire-based structures using cathodoluminescence imaging and spectroscopy. One important feature of nanowires is the stacking sequence of the crystal, either zincblede, wurtzite or a mix of the two. We show that this has an impact on the optical properties. In radial quantum wells, the thickness can be controlled on a monolayer level, in the case of flat side facets of the nanowires. With rough side facets, the quantum well collapses into quantum dots, as revealed by cathodoluminescence imaging. In order to extend the emission wavelength of light-emitting diodes into the ultraviolet or to cover the whole visible range, we use nanowire-seeded truncated pyramids as bases for these devices, based on either GaInN (visible) and AlGaN (ultraviolet).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.