Abstract

In this work, we have designed and synthesized SnO2 nanotubes wrapped by a porous carbon layer via a multistep method. Single-crystalline MnO(x) nanowires are employed as the template. SnO2 is grown on MnO(x) nanowires by a simple hydrothermal method to generate MnO(x)/SnO2 core-shell nanocables, followed by further coating with a layer of polydopamine. After carbonization of polydopamine and selective removal of MnO(x) nanowires, carbon coated SnO2 nanotubes are obtained. This structure combines several advantages. First, the internal empty space of the tubular structure can buffer the huge volume variation during lithium insertion-extraction processes properly, leading to improved cycling performance. Second, the nanosized SnO2 subunits and porous carbon coating not only shorten the distance for lithium ion diffusion but also offer large electrode-electrolyte contact area for fast Li(+) crossing the interface, thus enabling improved rate capability. Third, the flexible carbon coating is closely covered onto the SnO2 nanocrystals, which could facilitate the electronic transport and also significantly mitigate the pulverization. As a result, the as-synthesized SnO2/C-NT nanocomposites exhibit a high reversible capacity of 596 mA h g(-1) after 200 cycles, as well as an outstanding rate capability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call