Abstract

The design and construction of highly efficient and durable non-noble metal bifunctional catalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline media is essential for developing the hydrogen economy. To achieve this goal, we have developed a bifunctional nanowire-structured FeP-CoP array catalyst on carbon cloth with uniform distribution through in-situ hydrothermal growth and phosphating treatment. The unique nanowire array structure and the strong electronic interaction between FeP and CoP species have been confirmed. Electrochemical studies have found that the designed Fe0.14Co0.86-P/CC catalyst appears excellent HER (130 mV@10 mA cm−2)/OER (270 mV@10 mA cm−2) activity and stability. Moreover, the bifunctional Fe0.14Co0.86-P/CC(+/−) catalyst is also used in simulated industrial water splitting system, where the pair catalyst requires about 1.95 and 2.14 V to reach 500 and 1000 mA cm−2, even superior to the control RuO2(+)||Pt/C(−) catalyst, showing good industrial application prospects. These excellent electrocatalytic properties are attributed to the synergy between FeP and CoP species as well as the unique microstructure, which can accelerate charge transfer, expose more active sites and enhance electrolyte diffusion and gas emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.