Abstract

A circuit level understanding of immune cells and hematological cancers has been severely impeded by a lack of techniques that enable intracellular perturbation without significantly altering cell viability and function. Here, we demonstrate that vertical silicon nanowires (NWs) enable gene-specific manipulation of diverse murine and human immune cells with negligible toxicity. To illustrate the power of the technique, we then apply NW-mediated gene silencing to investigate the role of the Wnt signaling pathway in chronic lymphocytic leukemia (CLL). Remarkably, CLL-B cells from different patients exhibit tremendous heterogeneity in their response to the knockdown of a single gene, LEF1. This functional heterogeneity defines three distinct patient groups not discernible by conventional CLL cytogenetic markers and provides a prognostic indicator for patients’ time to first therapy. Analyses of gene expression signatures associated with these functional patient subgroups reveal unique insights into the underlying molecular basis for disease heterogeneity. Overall, our findings suggest a functional classification that can potentially guide the selection of patient-specific therapies in CLL and highlight the opportunities for nanotechnology to drive biological inquiry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.