Abstract

Deoxyribonucleic acid (DNA) has the appropriate molecular recognition property that makes it a suitable building block for the construction of nanoscale electronic devices. In particular, DNA employed as conducting wires is expected to be an alternative to optical lithography, which has resolution limits and requires high cost steppers. Nano-oxidation experiments were conducted on a silicon substrate by atomic force microscopy (AFM) to produce nanosized dots as anchors for DNA fixing. Short strand DNA molecules were then fixed on the anchors, which can recognize a specific complementary sequence. After the substrate was treated with a solution containing specific DNAs, which can hybridize with the short strand DNAs at the DNA sticky end, the anchors were connected to the DNAs by a self-assembly processes of DNA hybridization. Finally, silver was plated along the DNA molecules by a chemical treatment to introduce electrical conductivity. This method is expected to have potential for the integration of nanosized building blocks applicable to nanodevice construction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call