Abstract

Although lithium metal is an ideal anode with high theoretical capacity, Li dendrite formation and volume change have limited its application. We report a vertical polyaniline nanowire-coated carbon nanotube (CNT/PANI) composite flexible electrode on which Li could be homogeneously deposited to obtain a CNT/PANI@Li anode. In the composite, CNT/PANI acted as a host matrix with well-distributed Li ion flux attributed to high electroactive surface area, thereby effectively suppressing the Li dendrite. Compared with the pure CNT electrode, the CNT/PANI electrode presented low overpotential and stable long-term cycling with much less fluctuant stripping/plating profiles. The potential application of CNT/PANI@Li in all-flexible full cells was demonstrated by combining flexible organic poly(2,5-dihydroxyl-1,4-benzoquinonyl sulfide)/carbon nanotube (PDHBQS/CNT) composite films, in which the cathode achieves an eminent performance of 120 mA h g-1 at 50 mA g-1. Furthermore, pouch batteries with good flexibility were tested successfully, which demonstrated a promising future for all-flexible and high-performance Li-metal batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call