Abstract
Abstract Laser metal deposition (LMD) additive manufacturing was utilized to fabricate a Cu‒9Al‒5Fe‒5Ni alloy with a hierarchical microstructure and superior mechanical strength. An optimized processing window of LMD was established for printing the alloy with a relative density greater than 99% using laser power of 1000–1500 W, scanning speed of 0.5–1.5 m/min and hatch space of 1.5–2 mm. The LMD-printed alloy exhibited a microstructure consisting of a martensite β* phase, a Widmanstatten α phase, Fe3Al and NiAl nanoprecipitates, and nanotwins. The hierarchical microstructure comprising microscale cellular structures, sub-microscale grains, and nanoscale precipitates and twins was achieved. The cellular structures were formed by the martensite β* and α phases. The nanotwins were formed at the interface of the plate-like β* phase, which was induced by the low stacking fault energy of the alloy and high cooling rate of LMD. The Fe3Al precipitates were formed within the β* and α phases, while the NiAl precipitates were distributed in the β* phase. The yield strength, ultimate strength, and elongation of the LMD-printed alloy were 593–713 MPa, 769–949 MPa, and 10–12%, respectively. The yield strength of the LMD-printed alloy was 160% and 76% higher than that of the counterparts fabricated by casting and wire arc additive manufacturing, respectively, which was attributed to the synergistic effects of the underlying mechanisms including the Hall-Petch type strengthening, dislocation strengthening, precipitation strengthening, and solid solution strengthening. These findings validated the applicability of LMD for printing the Cu‒9Al‒5Fe‒5Ni alloy and facilitated the potential applications in marine and offshore industries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.