Abstract

Accumulative roll-bonding (ARB) is a severe plastic deformation process that is using rolling to produce ultrafine grains in coarse grained metallic materials. In this study, ARB has been applied on 70/30 brass up to 6 cycles at ambient temperature and non-lubricated conditions to apply a true strain up to 4.8 Von Mises strain. Microstructures of ARBed brass samples were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results indicated that during ARB cycles, the grain size decreased from micron-size to nano-size and mechanical twins were widely observed throughout the microstructure after cycle 1. However after cycle 3, the twinning activity became significantly limited and deformation occurred via shear bands formation. After cycle 6, the measured average grain size was about 50 nm and nanotwins were observed originating from grain boundaries and gain boundary junctions. With the reduction in the grain size down to nanometer, the pole mechanism was not the dominant mechanism of nanotwin formation and nanotwins were mainly produced via partial dislocation emission from grain boundaries and grain boundary junctions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.