Abstract
ABSTRACT3D scaffolds with different pore sizes, using single-walled carbon nanotubes (SWCNTs) and nanoparticles of different size were constructed. Biotinylated glucose oxidase (GOX-B) and anti-cholera toxin (anti-CT) were immobilized onto the one and two level nanoscaffolds, functionalized with pyrene-β-cyclodextrin for the construction of glucose based enzyme sensors and immunosensors, respectively. For enzyme sensors, highest current density and sensitivity (41.72 μA cm-2, 3 mA M-1 cm-2) were obtained with two level scaffolds made with 100 nm nanoparticles. In contrast to this, for immunosensors, highest current density and sensitivity (11.71 μA cm-2, 116.2 μA M-1 cm-2) were obtained with two level scaffolds made with 500 nm nanoparticles, indicating that the pore sizes can be adjusted using different size of nanoparticles for the respective applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.