Abstract

Strongly coupled dye aggregates with tailored exciton properties may find their use in developing artificial light-harvesting and optoelectronic devices. Here, we report the control of tubular pseudoisocyanine (PIC) dye J- and H-aggregate formation with tunable exciton fluorescence using lithocholic acid (LCA) as a template. The LCA-templated PIC J-aggregate nanotubes formed at a higher LCA/PIC molar ratio (≥5:1) exhibit a sharp, red-shifted absorption band (at 555 nm), intense fluorescence (at 565 nm), and shorter lifetime (200 ps), all indicating their strong superradiance properties. In contrast, the H-aggregate nanotubes formed at a lower LCA/PIC molar ratio (2:1) exhibit a significantly blue-shifted absorption band (at 420 nm) and highly red-shifted fluorescence emission (at 600 nm) with enhanced lifetime (4.40 ns). The controlled switching of the optical properties of the PIC dye aggregates achieved by controlling the LCA/PIC molar ratio could serve as an important guideline for the design of organic photo-functional materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.