Abstract

PurposeTunneling nanotubes (TNTs) are extremely thin (50–200 nm), actin-containing cell surface protrusions up to a few microns in length that can develop rapidly and connect various cell types. Mast cells (MCs) are unique immunomodulatory cells that are found perivascularly in all tissues. MCs communicate with many other cell types through the release of inflammatory, neurosensitizing, and vasoactive molecules, through which they are involved in the pathogenesis of many inflammatory diseases. We, therefore, investigated the possibility that MCs may form TNTs and communicate among themselves and with glioblastoma cells. MethodsLaboratory Allergic Diseases (LAD)-2 human MCs were cultured in medium supplemented with 100 U/mL penicillin/streptomycin and 100 ng/mL recombinant human stem cell factor. They were incubated with 20 nmol/L deep red probe for 20 minutes and 50 nmol/L green probe for 30 minutes. Human glioblastoma cells were incubated with 20 nmol/L deep red probe only, moved to glass-bottom culture dishes, and observed using a substance P 2 confocal microscope. LAD2 MCs were stimulated with 2 µmol/L of the peptide substance P for 30 minutes at 37ºC. Confocal digital images were processed. FindingsMCs can rapidly (within 5 minutes) form TNTs, which appear to transport mitochondrial and secretory granule particles among themselves and with cocultured glioblastoma cells. ImplicationsMCs are now accepted as having an important role in many diseases with an inflammatory component. TNTs provide a rapid and direct way for MCs to "alarm" other cell types with specificity not present when mediators are secreted into the tissue microenvironment. The identification of TNTs and their cargo could be important in the diagnosis and possible treatment of many inflammatory diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.