Abstract

Nanotribology is a new physical discipline in which friction, adhesion, wear and lubrication are studied within a unified framework at the nanoscopic level. In this paper, the experimental and theoretical problems of topical interest in this field are reviewed. In the analysis of the experimental data, emphasis is placed on 'dry' adhesive friction between the probe of a scanning frictional microscope and an atomically smooth surface. On the theoretical side, studies related to the mechanisms of adhesive (static) and dynamic (velocity proportional) friction are discussed and results on the electromagnetic, electron, and phonon effects as well as molecular dynamics results are presented. Studies using the method of quartz crystalline microbalance and the 'surface force' concept are briefly reviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.