Abstract

Five kinds of alkylthiol and biphenyl thiol monolayers with different surface terminals, spacer chains, and head groups were prepared using a self-assembly method. The adhesion, friction, and wear properties were measured using atomic force microscopy (AFM). It is found that hexadecane thiol (HDT) with $\mathrm{a}\ensuremath{-}{\mathrm{CH}}_{3}$ terminal exhibits the smallest adhesive force and friction force because of the terminal group with its low work of adhesion and high-compliance long carbon chain. Experimental results and a meniscus analysis indicate that the adhesive force varies linearly with work of adhesion of self-assembled monolayers (SAMs). A molecular spring model is presented to clarify the lubrication mechanisms of SAMs. The molecular spring constant, as well as the inter molecular forces, dictates the magnitude of the coefficients of friction of SAMs. ${4,4}^{\ensuremath{'}}$-dihydroxybiphenyl (DHBp) on Si(111), due to its rigid biphenyl spacer chains, stronger interface bonds, and a hard substrate, has the best wear resistance. For all of the SAMs, the wear depth with normal load curves show critical normal loads. Below the critical normal load, SAMs undergo orientation, while at the critical normal load SAMs undergo severe wear at the interface due to the weak interfacial bond strengths. The influence of relative humidity on adhesive and frictional forces of SAMs can be mainly understood by comparing their terminal polarization properties and work of adhesion. At higher humidity, water capillary condensation can either increase friction through increased adhesion in the contact zone or reduce friction through an enhanced water-lubricating effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.