Abstract

The nanotribological properties of aluminum gallium nitride (AlxGa1−xN) epitaxial films grown on low-temperature-grown GaN/AlN/Si substrates were investigated using a nanoscratch system. It was confirmed that the Al compositions played an important role, which was directly influencing the strength of the bonding forces and the shear resistance. It was verified that the measured friction coefficient (μ) values of the AlxGa1−xN films from the Al compositions (where x = 0.065, 0.085, and 0.137) were in the range of 0.8, 0.5, and 0.3, respectively, for Fn = 2000 μN and 0.12, 0.9, and 0.7, respectively, for Fn = 4000 μN. The values of μ were found to decrease with the increases in the Al compositions. We concluded that the Al composition played an important role in the reconstruction of the crystallites, which induced the transition phenomenon of brittleness to ductility in the AlxGa1−xN system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call