Abstract

IntroductionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has spread globally. The major reservoir for SARS-CoV-2 transmission remains controversial, with the airborne route remaining a possible transmission vehicle for carrying the virus within indoor environments. This study aimed to detect contamination of SARS-CoV-2 in high-efficiency particulate air (HEPA) filters within hospital isolation rooms of confirmed COVID-19 patients, exploring the role of nano-treatment of these filters with silver and titanium dioxide nanoparticles (Ag/TiO2 NPs). Materials and methodsWe investigated the effectiveness of Ag-NPs/TiO2-treated HEPA filters in the air of rooms occupied by patients with confirmed COVID-19 in a university teaching hospital in the Eastern province of Saudi Arabia during the first wave of the pandemic. Ag/TiO2 NPs were designed and coated on HEPA filters to examine the filtration efficiency and antiviral ability in the presence of aerosolized virus particles. A total of 20 viral swab samples were collected from five patients’ rooms before and after treatment with nanoparticle-prepared solutions into the sterile virus-transporting media. Samples were evaluated for SARS-CoV-2 with a reverse transcription-polymerase chain reaction. ResultsTwo samples taken from the HEPA filter air exhaust outlets prior to nano-treatment tested positive for SARS-CoV-2 RNA in the intensive care unit, which has stringent aerosolization control procedures, suggesting that small virus-laden droplets may be displaced by airflow. All air samples collected from the HEPA filters from the rooms of patients with confirmed COVID-19 following nano-treatment were negative. ConclusionWe recommend further experimental exploration using a larger number of HEPA filters in areas with aerosol-generating procedures, along with viability studies on the HEPA filters to facilitate decision-making in high-risk facilities regarding the replacement, storage, and disposal of HEPA filters in wards occupied by cases diagnosed with a highly transmissible disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call