Abstract
Because of the excellent performance in photochemistry, WO3 is increasingly applied in the field of biology and medicine. However, little is known about the mechanism of WO3 cytotoxicity. In this work, WO3 nanosheets with oxygen vacancy are synthesized by solvothermal method, then characterized and added to culture medium of human umbilical vein endothelial cells (HUVECs) with different concentrations. We characterized and analyzed the morphology of nano-WO3 by transmission electron microscopy and calculated the specific data of oxygen vacancy by XPS. It is the first time the effect of WO3−x on cells that WO3−x can cause oxidative stress in HUVEC cells, resulting in DNA damage and thus promoting apoptosis. Transcriptome sequencing is performed on cells treated with low and high concentrations of WO3−x, and a series of key signals affecting cell proliferation and apoptosis are detected in differentially expressed genes, which indicates the research direction of nanotoxicity. The expression levels of key genes are also verified by quantitative PCR after cell treatment with different concentrations of WO3−x. This work fills the gap between the biocompatibility of nano WO3−x materials and molecular cytology and paves the way for investigating the mechanism and risks of oxygen vacancy in cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.