Abstract

A tin oxide/tin-coated graphite composite was used as an alternate anode material in Li-ion batteries. Using an argon atmosphere pyrolysis technique, an inexpensive and easy way was developed to deposit nano-SnO and Sn onto the surface of graphite powders. The nanoparticle deposits were uniformly distributed on the surface of graphite powders through the examination of SEM. EDS, XRD, and XPS results show that these deposited particles possess the phases of SnO and Sn. The nano-SnO/Sn modified graphite anode materials were characterized by using CV, rate capability studies, cycle life testing, and thermal DSC. Results show that the nano-SnO/Sn deposits on graphite enhance capacity and cyclability in assembled Li-ion batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call