Abstract

While often life-saving, surgical resectioning of diseased tissues puts patients at risk for post-operative complications. Sutures and staples are well-accepted and routinely used to reconnect tissues, however, their mechanical mismatch with biological soft tissue and invasiveness contribute to wound healing complications, infections, and post-operative fluid leakage. In principle, laser tissue soldering offers an attractive, minimally-invasive alternative for seamless soft tissue fusion. However, despite encouraging experimental observations, including accelerated healing and lowered infection risk, critical issues related to temperature monitoring and control during soldering and associated complications have prevented their clinical exploitation to date. Here, intelligent laser tissue soldering (iSoldering) with integrated nanothermometry is introduced as a promising yet unexplored approach to overcome the critical shortcomings of laser tissue soldering. It demonstrates that adding thermoplasmonic and nanothermometry nanoparticles to proteinaceous solders enables heat confinement and non-invasive temperature monitoring and control, offering a route to high-performance, leak-tight tissue sealing even at deep tissue sites. The resulting tissue seals exhibit excellent mechanical properties and resistance to chemically-aggressive digestive fluids, including gastrointestinal juice. The iSolder can be readily cut and shaped by surgeons to optimally fit the tissue defect and can even be applied using infrared light from a medically approved light source, hence fulfilling key prerequisites for application in the operating theatre. Overall, iSoldering enables reproducible and well-controlled high-performance tissue sealing, offering new prospects for its clinical exploitation in diverse fields ranging from cardiovascular to visceral and plastic surgery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.