Abstract

BackgroundCarbon nanotubes have shown broad potential in biomedical applications, given their unique mechanical, optical, and chemical properties. In this pilot study, carbon nanotubes have been explored as multimodal drug delivery vectors that facilitate antiangiogenic therapy in zebrafish embryos.MethodsThree different agents, ie, an antiangiogenic binding site (cyclic arginine-glycin-easpartic acid), an antiangiogenic drug (thalidomide), and a tracking dye (rhodamine), were conjugated onto single-walled carbon nanotubes (SWCNT). The biodistribution, efficacy, and biocompatibility of these triple functionalized SWCNT were tested in mammalian cells and validated in transparent zebrafish embryos.ResultsAccumulation of SWCNT-associated nanoconjugates in blastoderm cells facilitated drug delivery applications. Mammalian cell xenograft assays demonstrated that these antiangiogenic SWCNT nanoconjugates specifically inhibited ectopic angiogenesis in the engrafted zebrafish embryos.ConclusionThis study highlights the potential of using SWCNT for generating efficient nanotherapeutics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call