Abstract

Recent advancements in a nanoarchitecture platform for safe and effective targeted phototherapy in a synergistic fashion is an absolute necessity in localized cancer therapy. Photothermal and photodynamic therapies (PTT and PDT) are considered as the most promising localized therapeutic intervention for cancer management as they have no long-term side effects and are minimally invasive and affordable. Herein, we have demonstrated a tailor-made nanotheranostic probe in which macrocyclic host cucurbituril [8] (CB[8]) is placed as a glue between two gold nanorods (GNRs) within ∼3 nm gaps in linear nanoassemblies with exquisitely sensitive plasmonics that exert combined phototherapy to investigate the therapeutic progression on human breast cancer cells. Photosensitizer methylene blue was positioned on CB[8] to impart the PDT effect, whereas GNR was responsible for PTT on a single laser trigger ensuring the synchronized phototherapy. Furthermore, the nanoconstruct was tagged with targeting anti-Her2 monoclonal antibody (MB-CB[8]@GNR-anti-Her2) for localized PTT and PDT on Her2 positive SKBR3 cells, subsequent cellular recognition by surface-enhanced Raman spectroscopy (SERS) platform, and further assessment of the combined intracellular phototherapy. Hence, the current strategy is definitely marked as a proof-of-concept straightforward approach that implies the perfect nature of the combined phototherapy to achieve an efficient cancer treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.