Abstract

Background: Cancer is a global public health issue; in the United States, it is the second leading cause of death. Furthermore, cancer, which consists of distinct subtypes of cancer cells and variable components, may cause a continuum of carcinogenesis. It can be categorized according to the part where it begins in the body, such as breast cancer or cervix cancer. Cervical cancer attacks cervix cells, most commonly in the transition area, when the endocervix's glandular cells transform into the exocervix's squamous cells. Cervical cancer is treated in several methods depending on the degree and size of the tumour and frequently entails surgery, radiotherapy, and chemotherapy. Methods: It is vital to have an effective drug delivery system that may increase the treatment effectiveness to overcome the limits of traditional therapy and achieve higher cancer therapeutic efficacy that is successful in treating cervical cancer. Additionally, these therapies are safer than traditional therapy. Although many nanocarriers have been created, only a few numbers have received clinical approval to deliver anticancer medications to the targeted areas where their predicted activity is to be seen. Conclusion: Along with the patents released, various research reports illustrating the value of nanocarriers are addressed in this review. Some recent publications, clinical evidence, and patent records on nanocarrier architectures have been given, strengthening the understanding of tumor management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call