Abstract

Mentha arvensis L. is the most valuable medicinal plant that possesses anti-inflammatory, hepatoprotective, antimicrobial, and antioxidant properties. There are few studies available in the literature about M. arvensis L nanoparticles, but their nanosuspensions-based information remains unclear and needs further study. This study was designed to explore the nanotechnology approach for biochemical characterisation, enhanced bioactivities, and photochemistry of freshly prepared M. arvensis L. nanosuspensions. Nanosuspensions of M. arvensis L. leaves were prepared by following the nanoprecipitation method. In this study, we performed structural and biochemical characterisation through analyses of Fourier-transform infrared (FTIR) spectroscopy, high-performance liquid chromatography (HPLC), phase contrast microscopy and enhanced bioactivities; antioxidant, alpha-amylase inhibition, glycation inhibition and cytotoxicity assays. FTIR analysis revealed the presence of phenols, amines hydroxyl, carboxylic acid, alkenes, alkenes and alkynes. HPLC analysis revealed the presence of chlorogenic acid, a principal phenolic component. Biofilm inhibition activity revealed that the growth formation of Escherichia coli inhibited up to 62.4% and 53.35% by leaves extract and nanosuspension, respectively. However, the growth of Staphylococcus aureus was not inhibited by nanosuspension and extract. Nanosuspension and extract exhibited 155.92 mg, 108.11 mg gallic acids per 100 g of dry weight total phenolic content and 233.44 mg, 163.933 mg catechin per 100 g of dried weight total flavonoid content in extract and nanosuspension, respectively. Antioxidant activity revealed the scavenging potential of nanosuspensions and extract was 41.01% and 12.07%, respectively. Alpha-amylase inhibiting activity of nanosuspension and extract was 36% and 33%, while, the antiglycation potential of nanosuspension and extract were 41.68% and 35.18%, respectively. Nanosuspensions and extract showed maximum hemolytic activity at 12.91% and 17.18%, respectively. These cost-effective nanoformulations could serve as a platform for therapeutic purposes in controlling the high risk of infectious diseases and designing efficient plant nanosuspensions by discovering novel bioactive compounds in an adequate manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call