Abstract

Bone is a nanocomposite material comprised of hierarchically arranged collagen fibrils, hydroxyapatite and proteoglycans in the nanometer scale. Cells are accustomed to interact with nanostructures, thus providing the cells with a natural bone-like environment that potentially enhance bone tissue regeneration/repair. In this direction, nanotechnology provides opportunities to fabricate as well as explore novel properties and phenomena of functional materials, devices, and systems at the nanometer-length scale. Recent studies have provided significant insights into the influence of topographical features in regulating cell behavior. Topographical features provide essential chemical and physical cues that cells can recognize and elicit desired cellular functions including preferential adhesion, migration, proliferation, and expression of specific cell phenotype to bring desired effects. The current article will address some of the nanotechnology implications in addressing issues related to orthopedic implants performance and tissue engineering approach to bone repair/regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.