Abstract

A serious health concern of frightening proportions is diabetes mellitus, a common metabolic illness marked by increased blood sugar levels as a result of insufficient insulin production or response. Nanosensors and nanomaterials have recently shown tremendous promise for enhancing glucose detection for the treatment of diabetes. Significant improvements in glucose sensor sensitivity, specificity, and reversibility have been achieved through the incorporation of nanoscale carbon structures, nanocomposites, and other nanomaterials. The use of these tailored nanocarriers offers a viable technique to enhance patient compliance and diabetes management by addressing the difficulties associated with oral peptide medication delivery for the treatment of diabetes caused by adverse circumstances in the gastrointestinal system. Nanocapsules are a promising approach for effective medication transportation via biological barriers by protecting drug molecules from the biological environment. A workable solution to problems with oral peptide medicine distribution for treating diabetes, particularly when it comes to unfavorable gastrointestinal conditions, is the use of customized nanocarriers. These nanocarriers have a flexible design and special in vivo characteristics that make it possible to go beyond cellular and tissue absorption barriers while improving the stability and effectiveness of therapeutic peptides. The management of diabetes mellitus has a great deal of potential for targeted lipid-based nanoparticles, which operate as an efficient drug delivery technique for oral administration of therapeutic peptides. With these developments in nanotechnology and nanocapsule-based techniques, diabetes treatment might be improved, patient compliance could be increased, and drug administration frequency could be decreased, potentially changing the field. This article presents a comprehensive review of recent advances in nanotechnology for diabetes mellitus diagnosis and the utilization of nanocapsules in diabetes treatment
 Keywords: Nanotechnology, Nanocapsules, Diabetes Mellitus, Nanocarriers, Nanomaterial, Nanotube

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call